Fault Attacks on Neural Networks

Chester Rebeiro
IIT Madras

Image Classification with Neural Networks

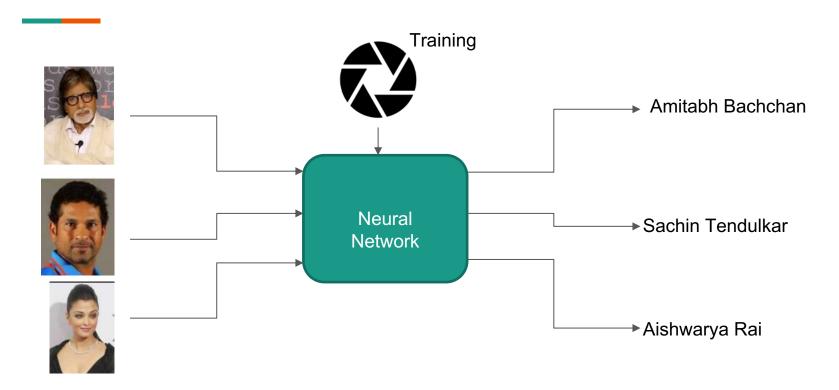
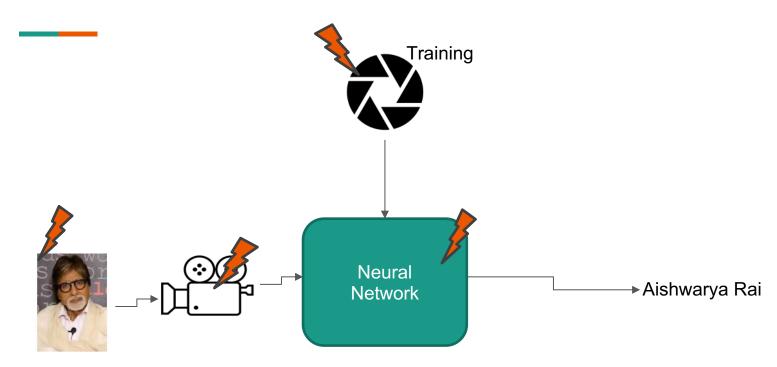


Image source : Wikipedia

Faults can cause misclassification



Attack categories and assumptions

Impersonation:

This is Aishwarya Rai

Dodging:

This is NOT Amitabh Bachchan

Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, *Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, Michael K. Reiter, CCS 2016*

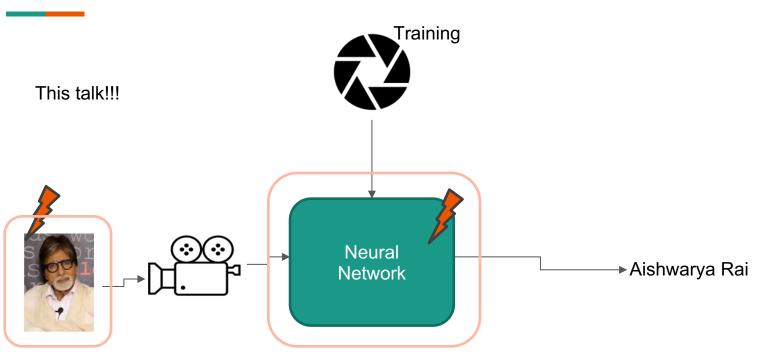
Image source: https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf

Attack Requirements

Requirements for a successful attack:

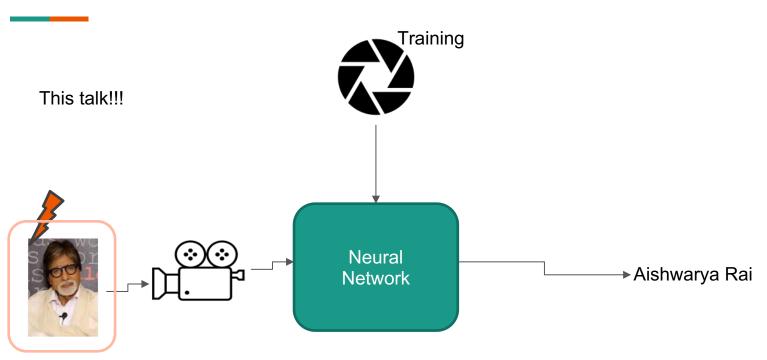
- O Physically realizable.
- O Inconspicuous (changes not easily noticed by observers)

Faults can cause misclassification



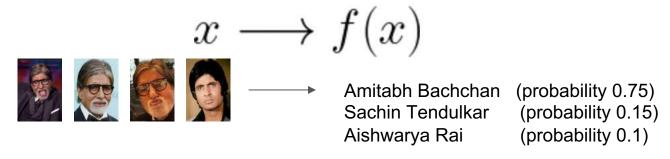
Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, *Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, Michael K. Reiter, CCS 2016*

Faults can cause misclassification

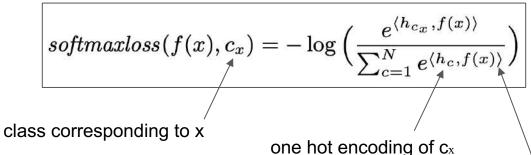


Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, *Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, Michael K. Reiter, CCS 2016*

Formal definition



Measurement of correctness



Typically, softmaxloss is minimum for the correct predictions:

Amitabh Bachchan: 0.72 Sachin Tendulkar: 1.32 Aishwarya Rai: 1.37

(eg. 001, 010, 100) <*, *> inner product

Formalizing Attacks

Impersonation

$$x \longrightarrow c_t$$
 (target class)

$$\underset{r}{argmin}\left(softmaxloss(f(x+r),c_{t})\right)$$

minimum change to r so that softmaxloss is minimized

Dodging

$$\underset{r}{argmin} \left(-softmaxloss(f(x+r),c_x) \right)$$

minimum change to r so that softmaxloss is maximized

solve using Gradiant Descent

First Results

Dodging: 100% success

• Impersonation: 100% success

original image classified correctly

modified image classified incorrectly (dodged)

Far from done...

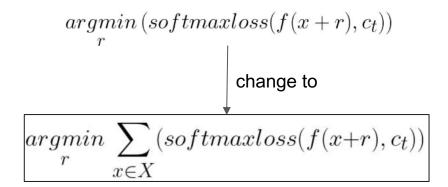
Not all perturbations are practical

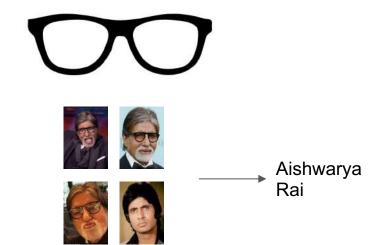
original image classified correctly

modified image classified incorrectly (dodged)

- Utilize facial accessories
 - easily implemented (example using an Inkjet printer)
 - O Inconspicuous (many people wear glasses)

- Utilize facial accessories
 - easily implemented (example using an Inkjet printer)
 - Inconspicuous (many people wear glasses)
- Enhancing Perturbations' Robustness





minimum change to r so that softmaxloss is minimized over a set of images

- Utilize facial accessories
 - o easily implemented (example using an Inkjet printer)
 - O Inconspicuous (many people wear glasses)

$$\underset{r}{argmin} \ \sum_{x \in X} (softmaxloss(f(x+r), c_t))$$

Aishwarya Rai

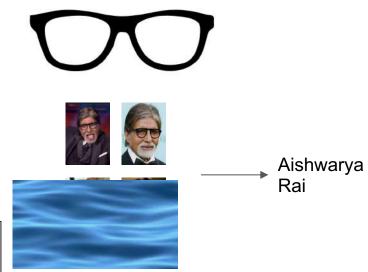
- Utilize facial accessories
 - o easily implemented (example using an Inkjet printer)
 - Inconspicuous (many people wear glasses)

$$\underset{r}{argmin} \sum_{x \in X} (softmaxloss(f(x+r), c_t))$$

Enhancing Perturbations' Smoothness

$$TV(r) = \sum_{i,j} ((r_{i,j} - r_{i+1,j})^2 + (r_{i,j} - r_{i,j+1})^2)^{1/2}$$

difference between adjacent perturbations is minimized



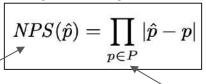
- Utilize facial accessories
 - easily implemented (example using an Inkjet printer)
 - Inconspicuous (many people wear glasses)

$$\underset{r}{argmin} \sum_{x \in X} (softmaxloss(f(x+r), c_t))$$

Enhancing Perturbations' Smoothness

$$TV(r) = \sum_{i,j} ((r_{i,j} - r_{i+1,j})^2 + (r_{i,j} - r_{i,j+1})^2)^{1/2}$$

Enhance printability



Aishwarya Rai

Non-printability score

RGB printable colors

- Utilize facial accessories
 - o easily implemented (example using an Inkjet printer)
 - Inconspicuous (many people wear glasses)

$$ullet ext{ argmin } \left(\left(\sum_{x \in X} softmaxloss(x+r, c_t)
ight) +
ight)$$

$$\kappa_1 \cdot TV(r) + \kappa_2 \cdot NPS(r)$$

Enhance printability

$$NPS(\hat{p}) = \prod_{p \in P} |\hat{p} - p|$$

- Utilize facial accessories
 - easily implemented (example using an Inkjet printer)
 - Inconspicuous (many people wear glasses)
- Enhancing Perturbations' Robustness

$$\underset{r}{argmin} \sum_{x \in X} (softmaxloss(f(x+r), c_t))$$

• Enhancing Perturbations' Smoothness

$$TV(r) = \sum_{i,j} ((r_{i,j} - r_{i+1,j})^2 + (r_{i,j} - r_{i,j+1})^2)^{1/2}$$

Enhance printability

$$NPS(\hat{p}) = \prod_{p \in P} |\hat{p} - p|$$



DNNs used for the experiments

- 1. DNN_A trained to recognize celebrities with an accuracy of 98.95%.
- 2. DNN_B is trained to recognize 10 subjects: 5 people from author's lab and 5 celebrities.
- 3. DNN_c was trained to recognize a larger set of people: 140 celebrities + 3 people from author's lab.

Dodging Attacks

Dodging

DNN	Subject ((attacker) info	Dodging results			
	Subject	Identity	SR	E(p(correct-class))		
2	$ S_A $	3rd author	100.00%	0.01		
DNN_B	S_B	2nd author	97.22%	0.03		
	S_C	1st author	80.00%	0.35		
	S_A	3rd author	100.00%	0.03		
DNN_C	S_B	2nd author	100.00%	< 0.01		
	S_C	1st author	100.00%	< 0.01		

success rate

Expected probability of the correct class Prior to dodging, this was at-least 0.85

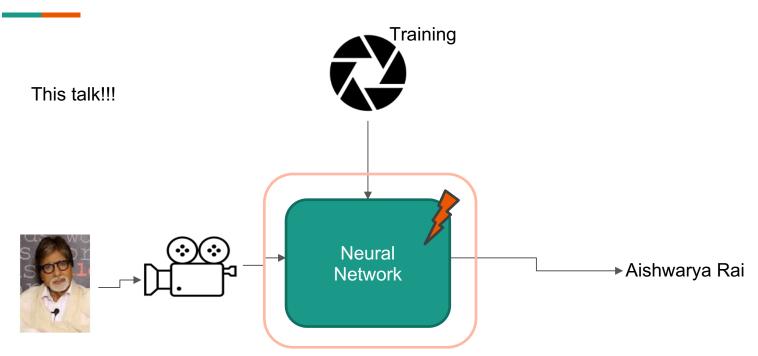
Impersonation Attacks

	Subject	(attacker) info	Ir	impersonation results		
DNN	Subject	Identity	Target	SR	SRT	
	$ S_A $	3rd author	Milla Jovovich	87.87%	48.48%	
DNN_B	S_B	2nd author	S_C	88.00%	75.00%	
	S_C	1st author	Clive Owen	16.13%	0.00%	
	S_A	3rd author	John Malkovich	100.00%	100.00%	
DNN_C	S_B	2nd author	Colin Powell	16.22%	0.00%	
	S_C	1st author	Carson Daly	100.00%	100.00%	

Success Rate

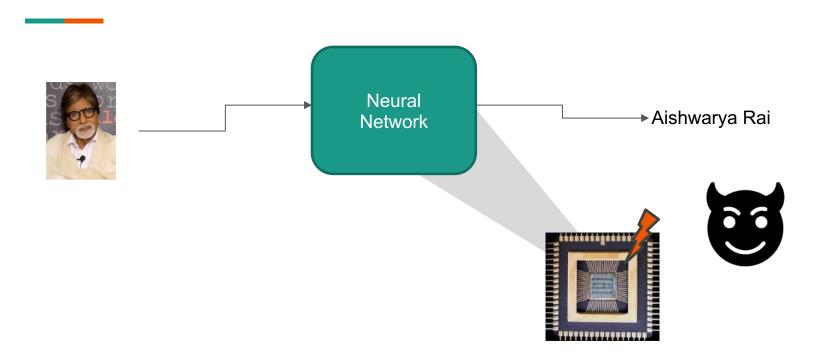
Success Rate with Threshold

Faults during the neural network



Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, *Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, Michael K. Reiter, CCS 2016*

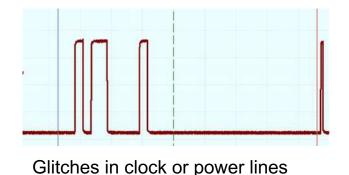
Faults in the neural network



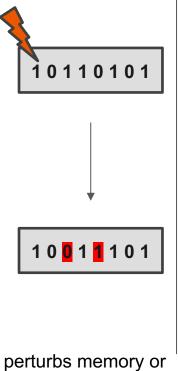
Injecting Faults in Semiconductor Devices

Laser fault injection

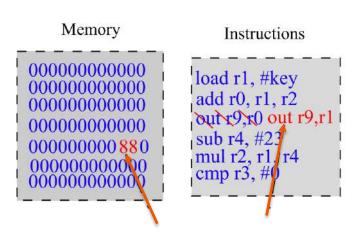
Row hammer



Fault Injection

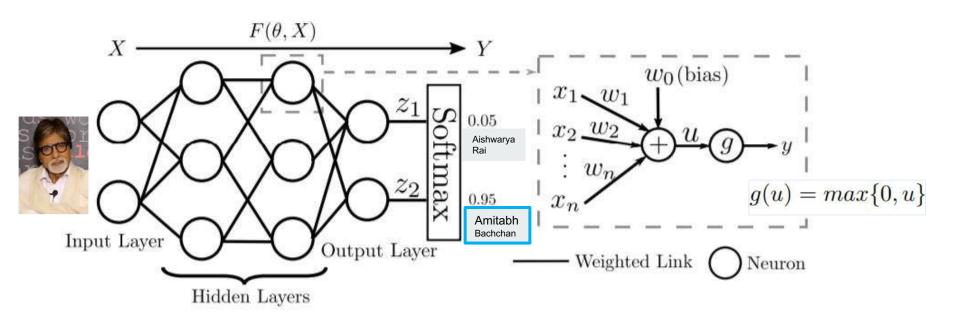


perturbs memory or registers

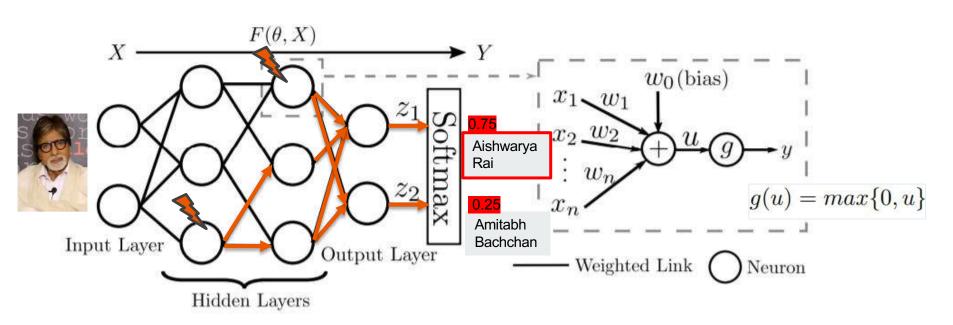


causes faults in data, modifies instructions or skips instructions

Neural Network Architecture



Faults in Neural Network



Inject faults in one or more neurons so that dodging or impersonation can be achieved. Faults injected by changing the weights/bias in the neuron

Properties of an attack

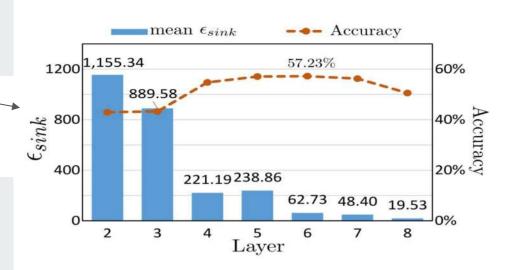
Efficiency: The misclassification should be efficient

Stealthiness:Need to make minimum changes to the Neural Network to achieve the desired impersonation.

Efficiency

Efficiency: The misclassification should be efficient

Stealthiness: Need to make minimum changes to the Neural Network to achieve the desired impersonation.

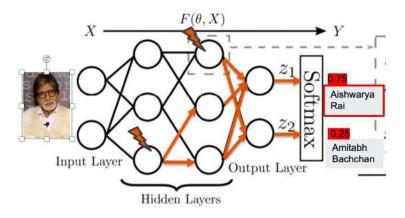


Change in bias to achieve impersonation depends on the layer

Stealthiness

Efficiency: The misclassification should be efficient

Stealthiness: Need to make minimum changes to the Neural Network to achieve the desired impersonation.

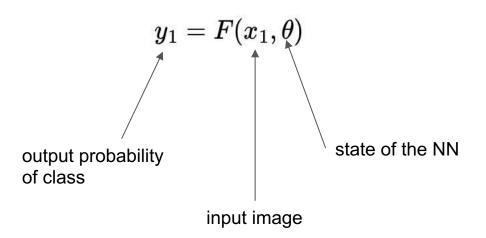


Need to make minimum changes to the Neural Network to achieve the desired impersonation.

Achieving Stealthiness with Gradiant Descent

Efficiency: The misclassification should be efficient

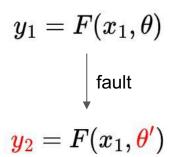
Stealthiness: Need to make minimum changes to the Neural Network to achieve the desired impersonation.

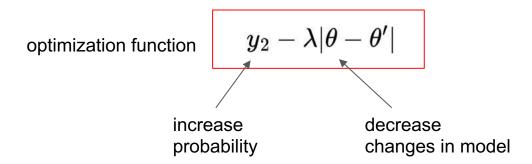


Achieving Stealthiness with Gradiant Descent

Efficiency: minimizing the number of changes required to achieve the needed misclassification

Stealthiness: Need to make minimum changes to the Neural Network to achieve the desired impersonation.





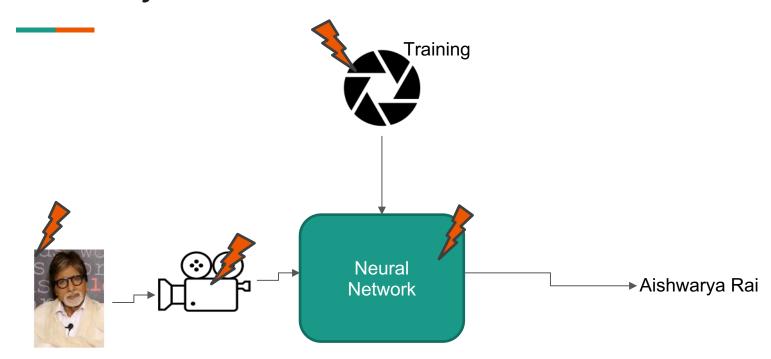
Classification accuracy and the number of modified parameters after attack

	MNIST				CIFAR			
	CA		# of MP		CA		# of MP	
	w/o MC	MC	w/o MC	MC	w/o MC	MC	w/o MC	MC
LW 2	46.38%	59.89%	200	19	12.98%	25.06%	2334	283
LW 3	56.22%	68.62%	7240	221	12.98%	54.54%	57009	1354
LW 4	58.80%	84.93%	21660	1077	25.34%	76.45%	129759	697
LW 5	46.07%	90.44%	43280	1215	23.39%	73.73%	195502	2321
LW 6	65.23%	95.20%	86520	2345	11.68%	81.66%	115127	198
LW 7	89.88%	97.01%	72150	5734	13.87%	80.57%	19109	43
LW 8	95.12%	96.86%	1439	125	13.02%	80.32%	1147	2
Global-wise	26.68%(§)	63.70%	232559(§)	1170	10.00%(§)	50.97%	519691(§)	425

Accuracy Modifications Accuracy Modifications

MC: modification compression

Summary



Open research problems

Unlike cryptographic attacks, adversarial attacks on ML models are relatively new. Our aim is to do the following in the field of adversarial machine learning:

- formal models for the adversarial attacks on a given implementation
- frameworks that automatically identify hot-spots of vulnerabilities
- tools that automatically fix vulnerabilities
- relationships between various forms of adversarial attack possible

Thank You