Fault Attacks on Neural Networks

Chester Rebeiro
IIT Madras




Image Classification with Neural Networks
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Faults can cause misclassification
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Attack categories and assumptions

Impersonation:

v

This is Aishwarya Rai This is NOT Amitabh Bachchan

Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, Mahmood Sharif, Sruti
Bhagavatula, Lujo Bauer, Michael K. Reiter, CCS 2016
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Attack Requirements

Requirements for a successful attack:
O  Physically realizable.
O Inconspicuous (changes not easily noticed by observers)
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Formal definition

| @ — > Amitabh Bachchan (probability 0.75)
' Sachin Tendulkar  (probability 0.15)
Aishwarya Rai (probability 0.1)

Measurement of correctness

Typically, softmaxloss is minimum for
elhes f(@)) ) the correct predictions:

he,f(x
Ec e( #( )> Amitabh Bachchan: 0.72

/ Sachin Tendulkar: 1.32
Aishwarya Rai: 1.37
one hot encoding of Cx

softmazloss(f(x),c.) = — log (

class corresponding to x

(eg. 001, 010, 100) <*,*> inner product




Formalizing Attacks

® Impersonation T —> Ct (t&lget Cl‘a,SS)

minimum change to r so that
softmaxloss is minimized

argmin (softmaxloss(f(x +r), ct))
‘ o

e Dodging

minimum change to r so that

argmin (—so ftmaxloss(f(x+r)/c
. softmaxloss is maximized
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solve using Gradiant Descent




First Results

e Dodging: 100% success
® Impersonation: 100% success

original image
classified correctly

modified image
classified incorrectly
(dodged)

however, we are far from done....
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Far from done...

e Not all perturbations are practical

original image modified image
classified correctly classified incorrectly
(dodged)
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Making the attacks more practical

e Utilize facial accessories W
o easily implemented (example using an Inkjet printer)

O Inconspicuous (many people wear glasses)
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Making the attacks more practical

Utilize facial accessories
o easily implemented (example using an Inkjet printer)
O Inconspicuous (many people wear glasses)

Enhancing Perturbations’ Robustness

argmin (softmazloss(f(x +r),ct))

r

change to

argman softmaxloss( f(x+r), ct
g‘
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minimum change to r so that
softmaxloss is minimized over a set of images
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Making the attacks more practical

e Utilize facial accessories
o easily implemented (example using an Inkjet printer)

O Inconspicuous (many people wear glasses)

e Enhancing Perturbations’ Robustness .
< :
1 Aishwarya

arg;{nm §,<80f max oss(f(%+'“),6’t)) Rai
T
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Making the attacks more practical

e Utilize facial accessories
o easily implemented (example using an Inkjet printer)

O Inconspicuous (many people wear glasses)

e Enhancing Perturbations’ Robustness

argmin Z (softmaxloss(f(xz+r),ct))
| zeX

e Enhancing Perturbations’ Smoothness
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TV(r) =) ((rij — ris1)’ + (rij — rije)

ij

difference between adjacent perturbations is minimized
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Making the attacks more practical

e Utilize facial accessories
o easily implemented (example using an Inkjet printer)

O Inconspicuous (many people wear glasses)

e Enhancing Perturbations’ Robustness @
argmin softmaxloss(f(x+r),c 7 - - )
9 > (sof (f(2+7), ct)) Aishwarya

reX Rai
e Enhancing Perturbations’ Smoothness

TV(r) = Z(("i.j — ris1g)? + (rig — rije1)’

i,J
e Enhance printability

NPS(p) =[] Ip —»l
Y pEP

Non-printability score \

RGB printable colors 1




Making the attacks more practical

° argmin (( Z soﬂma,.QZZOSS(iB + r, ct))+
ar r xGX
° . K1 - TV(’T') + K2 - NPS(T))

NPS(p) = [] 16— »l

pEP
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Making the attacks more practical

°
o
o
°
argmin Z (softmaxloss(f(xz+r),ct))
" xeX
°
TV(r) =Y ((rij — ris15)® + (rij — rijs1)?)!
inj
°
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DNNs used for the experiments

1. DNNj, trained to recognize celebrities with an accuracy of 98.95%.
2. DNNg is trained to recognize 10 subjects: 5 people from author’s lab and 5 celebrities.

3. DNN_. was trained to recognize a larger set of people: 140 celebrities + 3 people from author’s
lab.

DNN reference : https://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/parkhi15.pdf 19

[ s




Dodging Attacks

Subject (attacker) info Dodging results

DNN | Subject Identity SR E(p(correct-class))
Sa 3rd author | 100.00% 0.01
DNNg Sp 2nd author 97.22% 0.03
Sc 1st author 80.00% 0.35
SA 3rd author | 100.00% 0.03
DNN¢ SB 2nd author | 100.00% <0.01
Sc 1st author | 100.00% <0.01

/

Expected probability of the correct class
Prior to dodging, this was at-least 0.85

D odglng [ success rate

Image source : https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf




Impersonation Attacks

Subject (attacker) info

Impersonation results

DNN | Subject Identity Target SR SRT
Sa 3rd author | Milla Jovovich  87.87%  48.48%

DNNg Sg 2nd author Sc 88.00% 75.00%
Sc 1st author Clive Owen 16.13% 0.00%
Sa 3rd author | John Malkovich 100.00% 100.00%

DNN¢ SB 2nd author Colin Powell 16.22% 0.00%
Sc 1st author Carson Daly 100.00% 100.00%

Success Rate /

mage source : https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf

:

Success Rate with Threshold
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Faults during the neural network
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Faults in the neural network
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Fault Injection on Deep Neural Networks, -Yannan Liu, Lingxiao Wei, Bo Luo, Qiang Xu,ICCAD 2017




Injecting Faults in Semiconductor Devices

RowHammer
Attacking DORA DRAM Chips 4 N,

Laser fault injection Row hammer
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Glitches in clock or power lines

Fault Injection

10110101

1010101

perturbs memory or
registers

Memory Instructions
| e A |
000000000000
000000000000 | liifif e
000000000000 | 290 ¥l 12 o -
000000000000 | (OuNIxD out r9.r |
000000000880 | 15ub 14, #2 [
000000000090 | 1m0l T, )T
000000000009 , 1CMPT |

causes faults in data,
modifies instructions or skips
instructions
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Neural Network Architecture
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Faults in Neural Network
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Hidden Layers

Inject faults in one or more neurons so that dodging or impersonation can be achieved.
Faults injected by changing the weights/bias in the neuron

26




Properties of an attack

Efficiency: The misclassification
should be efficient

Stealthiness:Need to make
minimum changes to the Neural
Network to achieve the desired
impersonation.
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Efficiency

Efficiency: The misclassification

should be efficient m—CAN €sink —e— Accuracy
1,155.34 57.23%
889.58.7 ~e
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Change in bias to achieve impersonation
depends on the layer
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Stealthiness

Stealthiness: Need to make
minimum changes to the Neural
Network to achieve the desired
impersonation.
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Need to make minimum changes to the Neural
Network to achieve the desired impersonation.
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Achieving Stealthiness with Gradiant Descent

Y1 = F(ml,e)

A

output probability state of the NN
of class

input image
Stealthiness:Need to make
minimum changes to the Neural
Network to achieve the desired
impersonation.




Achieving Stealthiness with Gradiant Descent

Y1 = F(ml,e)
lfault
Y2 = F(wl’gl)

/
optimization function Yz — )‘|0 — |

Stealthiness:Need to make

Y
minimum changes to the Neural /
Network to achieve the desired
impersonation. increase decrease

probability changes in model
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Classification accuracy and the number of modified
parameters after attack

MNIST CIFAR
CA # of MP CA # of MP
w/o MC MC w/o MC MC w/o MC MC w/o MC MC

LW 2 46.38% 59.89% 200 19 12.98% 25.06% 2334 283

LW 3 56.22% 68.62% 7240 221 12.98% 54.54% 57009 1354

LW 4 58.80% 84.93% 21660 1077 25.34% 76.45% 129759 697

LW 5 46.07% 90.44% 43280 1215 23.39% 73.73% 195502 2321

LW 6 65.23% 95.20% 86520 2345 11.68% 81.66% 115127 198

LW 7 89.88% 97.01% 72150 5734 13.87% 80.57% 19109 43

LW 8 95.12% 96.86% 1439 125 13.02% 80.32% 1147 2
Global-wise 26.68%(8) 63.70% 232559(%) 1170 10.00%(8) 50.97% 519691(8) 425

Accuracy Modifications Accuracy Modifications

MC: modification
compression

Image source : https://ieeexplore.ieee.org/document/8203770




Summary
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Open research problems

Unlike cryptographic attacks, adversarial attacks on ML models are relatively new. Our aim is to do the
following in the field of adversarial machine learning:

e formal models for the adversarial attacks on a given implementation
e frameworks that automatically identify hot-spots of vulnerabilities
e tools that automatically fix vulnerabilities

e relationships between various forms of adversarial attack possible
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